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Using Neural Networks for Pavement Rolling Resistance  

Carl A. Lenngren1, Reus Salini 

 

 

Abstract 

All pavements contribute to the rolling resistance of vehicles. For passenger cars, the 

pavement influence is limited to the surface properties, but heavy trucks are influenced 

by the deformation, the internal damping, and non-elastic behavior of the pavement 

materials involved. Previous studies have been addressing the pavement type, the 

material type and various stages of compaction. Recently, even the effects of curling 

slabs on rolling resistance was assessed. As sustainable pavements are now becoming a 

requirement from road authorities, it is important to have access to calculable parameters 

of energy losses during use, and not only from construction. The present paper addresses 

some of the input parameters needed to assess rolling resistance losses for pavements in 

general and rigid pavements in particular, by using neural network techniques. The 

results can be used for the decision-making in either bidding processes or strategic 

planning. 

 

 

Introduction 

Traffic operating costs are important for the optimization of transportation. Road 

roughness affects the vehicle speed, rider comfort, vehicle wear, and rate and severity of 

accidents. All these items can be attributed to costs. Most road authorities now run 

Pavement Management Systems (PMS), which are relying heavily on user costs. These 

data and their associated costs are used for asset valuation purposes as well. In addition to 

actual costs for e.g. fuel, in recent years the carbon footprint is associated as an additional 

cost to road transportation previously ignored.  

For the highly competitive transport sector, the vehicle operating costs are more 

important than ever. Much attention concerns the engine and tire technology, but relative 

little research focus on the pavement contribution to sustainability. Thus, further 

investments in infrastructure could very well be justified if such result in lower 

emissions. For instance, comparative tests on different pavement types show that the 

truck rolling resistance generally is lower on rigid pavements, but there is a variability 

due to other external factors, such as temperature. By sampling and storing time histories 

from Falling Weight Deflectometer (FWD), testing it is possible to generate load-

deflection data sets. Thus, it is possible to estimate the pavement contribution to truck 

rolling resistance.  
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Research Significance 

The pavement contribution to the rolling resistance requires sampling of the FWD load 

and deflection histories. All sensors have to be calibrated over the duration of the pulse. 

Further, software has to be developed to process the data in reasonable time. Obviously, it 

will take a long time to analyze large data sets, which may discourage further processing. 

The present study aims at finding data readily available for estimating the dissipation 

work without analyzing time histories. If feasible, large data sets on layer moduli or 

deflections can be analyzed for rolling resistance right from the database source. 

 

Objective  

The present paper is addressing the pavement contribution to rolling resistance in 

pavements. The objective is to look at variables that seem to influence the energy 

dissipation the most through sensitivity analysis by training neural networks. The input 

parameters are load, deflections, backcalculated structural parameters such as E-moduli 

and strains. The output is the dissipation energy derived from load-deflection time history 

data. 

Scope 

The pavement type analyzed is rigid pavements only. The test is limited to available data 

collected during late summer and fall conditions, thus seasonable variation is not 

considered.  

Background 

Vehicle fuel consumption is depending on acceleration, wind resistance, and rolling 

resistance. The wind resistance is a function of the vehicle design, front area, and wind 

speed. The rolling resistance is depending on the tire friction, internal friction for engine 

and drive train, plus a component consisting of deforming the surface. A large part of the 

losses attributed to rolling resistance is from the tires interacting with the pavement. 

Thus, the tire industry has made a lot of research in this area optimizing the design of 

tread and wheel design. Pavement engineers have also contributed to the research by 

looking at the surface texture. There is a tradeoff with other desired parameters such as 

low noise and good friction to consider. In addition, macro-texture and roughness affect 

the fuel consumption also. At a full-scale pavement test facility, driverless trucks needed 

4% less fuel after the track was resurfaced, (Mitchell). The influence of the pavement 

profile including joints on rolling resistance is rather easy to determine with a truck 

suspension model, but the losses within the pavement layers and soil are much more 

difficult to assess.  

Tests involve careful measurements of truck fuel consumption in the field on 

several different pavement types, (Taylor et al., Hultqvist). These tests are not entirely 

conclusive, much due to factors hard to control, such as the aforementioned wind speed 

and direction, hill gradients, temperature fluctuations et cetera. 

To overcome the problems with wind speed an FWD can be used to mimic the 

load from a passing truck. The load pulse is designed to correspond to a certain speed, but 

as the surface deformation is recorded as well, it is possible to derive some interesting 

dynamic properties. Figure 1 shows a 50-millisecond load pulse and the corresponding 

response from deflection sensor D0 at the center of the loading plate. The maximum 

deflection is .3 mm, for the 50 kN maximum load.  
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Figure 1. Time history plot of a load and deformation. 

 

If plots are made as a load-deflection diagram, the energy attenuation losses in the 

pavement layers and the soil can be derived. Figure 2 illustrates a semi-rigid and flexible 

pavement center deflection response for two 50 kN drops. Note that these load-deflection 

graphs do not represent hysteresis directly. However, the magnitude of the work has been 

calibrated to the truck-fuel-consumption test results derived at the site, (Hultqvist, 

Lenngren 2009). The economic implications from choosing pavement type were further 

investigated by (Fäldner). 

  

 

Figure 2. Semi-rigid and flexible pavement load-displacement diagram.  
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The dissipation in Figure 2 was derived to .4 Nm and 2.2 Nm for the two different 

pavement types respectively. These values are common for high volume roads resting on 

relatively stiff subgrades. Over the years, the dissipation in many different pavement 

structures have been assessed. One of the present authors, (Lenngren 2014), investigated 

the dissipation of upward curling in concrete slabs. It was found to be significant enough 

to be included in the overall assessment of rolling resistance. There were also tests during 

construction and for compaction. Lack of compaction would show up as additional 

dissipation as much of the impact work is consumed rearranging the unbound granular 

material.   

Figure 3 shows a test from a failed mining road. Iron ore trucks travelled the road 

before all layers were in place, and the road deteriorated fast. The dissipated work is about 

100 times greater than for a rigid road. It illustrates the large variability of various roads, 

and that there is a need to minimize the dissipation for sustainability. 

   

 

 

 

 

Figure 3. Load-Deflection diagram from a mining Road. 

Work is about 44 Nm. 

 

Neural Networks 

Artificial neural networks (ANN), or just neural networks (NN), are a form for machine 

learning software system inspired by biological neural networks and used to model and 

estimate results that are function of a large number of inputs, with complex or even 

unknown relationship. It has special algorithms that mimic neurons and work together 

exchanging messages between each other to give importance to the input data in form of 

weight, making neural networks capable to adapt to learn. For practical purposes, the 

neural networks can be used to create black box-like models that store a given knowledge 
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that can be used to identify how the inputs are interacting to create the desired output and 

to evaluate similar situations [Schalkoff, 1997].  

Building a Data Base and Using Neural Networks for Assessing Dissipation 

In the previous studies, rather straightforward calculations of FWD time history data were 

utilized to derive the pavement contribution of various pavement types and soils. 

However, over the past thirty years, there are many FWD test sites with collected data, 

which do not contain the calibrated deflection time histories. In addition, for new road 

construction, it is not possible to acquire such data unless rather expensive test sections 

are constructed. Thus, by building a data base containing layer properties and known 

designs with measured dissipation, it should be possible to determine some expected 

dissipation at the planned stage. The data would help in designing sustainable pavements 

and decreasing the carbon footprint altogether. A bonus effect would be to access what 

parameters have the most influence of the dissipation. 

Data used for the present study 

The data used for this study were collected in the year 2010 on the motorway E20 near 

the city of Eskilstuna, Sweden by an experienced team, with a dynamically calibrated 

FWD device. The moduli were backcalculated based on the deflection data and materials 

thicknesses with the CLEVERCALC 4.0 software, using elastic linear materials in the 

model. 

Deflections were read at the distances from the FWD loading plate center shown 

in Table 1. For each section, ten tests were performed, i.e. ten drops, with the FWD 

parked in the same position. The load was varied at three load levels, repeated twice as 

can be seen in Table 2. 

Table 1. Deflections distances 

Deflection Distance from the loading plate center 

d0 0 cm 

d1 20 cm 

d2 30 cm 

d3 45 cm 

d4 60 cm 

d5 90 cm 

d6 120 cm 

 

The sections in the present study consists of a 550 mm granular subbase. A 150 mm 

cement treated base on which a 200 mm Portland Cement Concrete slab is resting. Tests 

were done in a center slab position. The sections are going through cuts and embankments 

as well. 

 

Energy dissipation calculation 
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The energy dissipation was derived from time history load-deflection loops, by an 

incremental procedure in the software TimeH developed earlier for the previous studies. 

The dissipation was calibrated to truck-fuel-consumption tests on different pavement 

types, (Lenngren 2009, Hultqvist.) 

 

Evaluation of energy dissipation based on deflections 

Neural networks were used to evaluate the energy dissipation based on deflection data, 

temperature, load and drop height, which are numeric inputs. Ten load drops were done at 

every section and the drop number was used in the NN model as a class input. 

The data set has 130 cases, 104 (80%) were picked by random for the model 

generation and the remaining 26 (20%) were used for testing. Table 2 is showing the data 

for the first tested section. 

Table 2. Sample data used for the deflection versus energy dissipation model 

 

The NN generate black-box models, which cannot be described in the form of an 

equation. It should be evaluated according to its outputs over the training and test data sets. 

Figure  is showing the generated model predictions against the actual values for the training 

data while Figure  shows the same model used with unseen data, the testing data set. 

Input data Output 

Drop # 

Drop 
Height 

Load 
(kN) 

Temp. 
(C) 

Deflections (0.001 mm) 
Dissipation (Nm) 

d0 d1 d2 d3 d4 d5 d6 

1 3 53.2 10.1 58 54 52 50 47 40 33 3.6 

2 2 42.8 10.1 46 42 40 39 36 31 26 3.3 

3 3 54.1 10.1 58 54 51 49 46 40 33 3.4 

4 4 73.9 10.1 80 75 71 67 64 56 46 1.6 

5 2 42.4 10.1 46 43 40 38 36 31 26 3.5 

6 3 53.5 10.1 58 54 50 49 46 40 33 4.9 

7 4 73.8 10.1 80 75 71 67 64 55 46 8.4 

8 2 42.3 10.1 46 42 40 39 36 31 26 5.9 

9 3 53.4 10.1 58 54 50 48 45 39 33 0.4 

10 4 73.8 10.1 80 75 72 67 64 55 46 1.0 
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Figure 4. Dissipation prediction versus actual values. Based on the deflection data 

for the training data set 

 

 

 

Figure 5. Dissipation prediction versus actual values. Based on the deflection data 

for the testing data set 
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The sensitivity analysis was performed to evaluate the relative variable impacts, 

i.e., how important every input is for the output (energy dissipation) construction. This 

analysis is based on the built model with the training data set. Figure  shows that 

deflections 0, 4, 1, 6, 2 and 5 are the best inputs for the energy dissipation calculation. 

Other data, including deflection 3, drop number, temperature, load and drop height are 

not relevant, i.e., by ignoring or removing them from the data set will lead to a better 

model rather than processing them together. 

 

 

Figure 6. Sensitivity analysis for dissipation prediction with base on the deflection 

data 

Evaluation of energy dissipation based on deflections and modulus 

Another NN model was generated to evaluate the deflections and modulus data as input 

for the energy dissipation calculation (output).  

The used input variables for the modeling were the deflections 0 to 6, the 

temperature, the modulus for the four layers, the drop number and the load, with the 

energy dissipation as output. The 130 cases data were also split by random between 

training (80%) and testing (20%). Table 3 is showing the data for the first tested section. 

Note that the backcalculated PCC layer is kept fixed at 40 000 MPa. 
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Table 3. Sample data used for the modulus and deflection versus energy dissipation 

model. 

 

 

The model was generated after 65 interactions and its performance against the 

actual values for the training data set is shown in Figure 7. The model used to predict 

unseen data, i.e. the testing data set, is shown in Figure 8. 

 

Figure 7. Dissipation prediction versus actual values with base on the deflection 

and modulus data for the training data set 
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INPUTS OUTPUT 

Drop 
number 

Deflections (0.001 mm) Modulus (MPa) Temp. 
(C) 

Load 
(kN) 

Dissipation 
(Nm) d0 d1 d2 d3 d4 d5 d6 E(1) E(2) E(3) E(4) 

1 58 54 52 50 47 40 33 40000 28996 123 472 10.1 53.2 3.6 

2 46 42 40 39 36 31 26 40000 31562 187 428 10.1 42.8 3.3 

3 58 54 51 49 46 40 33 40000 30763 209 413 10.1 54.1 3.4 

4 80 75 71 67 64 56 46 40000 31069 225 394 10.1 73.9 1.6 

5 46 43 40 38 36 31 26 40000 26102 369 376 10.1 42.4 3.5 

6 58 54 50 49 46 40 33 40000 31274 247 389 10.1 53.5 4.9 

7 80 75 71 67 64 55 46 40000 29556 237 395 10.1 73.8 8.4 

8 46 42 40 39 36 31 26 40000 30755 186 422 10.1 42.3 5,9 

9 58 54 50 48 45 39 33 40000 26687 438 363 10.1 53.4 0.4 

10 80 75 72 67 64 55 46 40000 28767 211 407 10.1 73.8 7.1 
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Figure 8. Dissipation prediction versus actual values with base on the deflection 

and modulus data for the testing data set 

 

The relative variable impacts are shown in Figure 9. When exposed to use both 

deflection and modulus data, the NN discovered that using just deflections would lead to 

a better result, giving little relevance for the modulus and other data. The NN once again 

gave no relevance to the deflection d3. 
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Figure 9. Sensitivity analysis for dissipation prediction with base on the deflection 

and modulus data 

 

 

Evaluation of energy dissipation based on modulus 

As part of this exploratory study the NN were enforced to generate the model just with 

modulus, temperature, load and drop number as input, and keeping the energy dissipation 

as output. Again, the same data set, split into training (80%) and testing (20%) was used.  

Table 4 is showing the data for the first tested section. 
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Table 4. Sample data used for the modulus and deflection vs. energy dissipation 

model 

INPUTS OUTPUT 

Drop # 
Modulus Temperature 

(C) 
Load 
(kN) 

Dissipation (Nm) 

E(1) E(2) E(3) E(4) 

1 40000 28996 123 472 10.1 53.2 3.63 

2 40000 31562 187 428 10.1 42.8 1.73 

3 40000 30763 209 413 10.1 54.1 3.03 

4 40000 31069 225 394 10.1 73.9 8.01 

5 40000 26102 369 376 10.1 42.4 1.63 

6 40000 31274 247 389 10.1 53.5 2.94 

7 40000 29556 237 395 10.1 73.8 7.38. 

8 40000 30755 186 422 10.1 42.3 1.45 

9 40000 26687 438 363 10.1 53.4 2.80 

10 40000 28767 211 407 10.1 73.8 7.57 

 

The model was generated after 75 interactions only. Figure 10. and 11 are showing 

a model with a slight drop in performance for both, training and testing data sets, when 

compared with the model generated with deflections only. 
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Figure 10. Dissipation prediction versus actual values. Based on the modulus data 

for the training data set 

 

Figure 11. Dissipation prediction versus actual values.  Based on the modulus data 

for the testing data set 
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The sensitivity analysis is showing that the subgrade modulus (E4) and the load are 

almost the only required variables for the best prediction. See Figure 12. 

 

Figure 12. Sensitivity analysis for dissipation prediction with base on the modulus 

data 

 

Discussion 

There is dissipation in pavements due to a number of reasons. There are inertia, 

compaction, strain energy leading to fatigue, visco-elastic and non-linear plastic 

properties just to mention a few. For rigid pavements, the deformation in the unbound 

materials is relatively small, so most of the dissipation work occurs in the subgrade. This 

in turn also governs the deflection measured on the surface. Thus, one might surmise that 

there will be a correlation between deformation and dissipation. In addition, other 

parameters could be considered as noise, likely to degrade a direct correlation study. In 

the present study, all test basins were from a center slab position, so no effects of curling 

were prevalent. If the tests had progressed during a summer day, including late afternoon, 

with changing degrees of curling, the results could have been inconclusive.  

The deflection d3 at three load plate radii is not relevant for the energy dissipation 

prediction, something that was confirmed by the deflection only model, and deflection 

plus modulus model as well. There is no obvious explanation, but it may be related to its 

distance from the loading plate combined with these specific materials thicknesses. 

Looking at shape of the deflection basin, the d3 position is near the inflection point of the 

curve. This is the location where the change of deflection along the radius from the load 

is greatest. 
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Conclusions 

The present study shows the internal pavement energy dissipation can be successfully 

modeled with neural networks, with very consistent results for both, training and testing 

data sets. 

The deflections data comprise a better input to calculate the energy dissipation than 

the modulus, providing a more accurate result for both, training and testing data sets. 

For the characteristics of the tested pavement, the number of drops is not relevant. 

There is no need to perform 10 drops on every section. A smaller number of drops will 

suffice for a faster and cheaper sampling. However, this may not apply for new 

pavements being subjected to compaction by traffic a.k.a. Phase I Rutting. 

The temperature was found to be irrelevant, as expected. For all performed tests, it 

was almost constant, with variability between 9.8 and 10.4 degree Celsius only. The tests 

were done mid-slab with little bending due to gradients. 

For the model with the deflection data, the loads are not important according to the 

NN. It seems as the deflections are providing information good enough to construct a 

robust model and the load consideration will degrade its accuracy. 

For the model with modulus data only, the subgrade modulus and load are the most 

important variables. This was expected because, for the tested sections, the materials and 

thicknesses are constant. 

When allowed to use both, deflections and modulus data, the NN concluded that the 

consideration of just deflection will lead to a better model and left no relevance to 

modulus. Thus, there is no practical purpose considering the modulus. 

The findings and conclusions are valid for the used data set, where the pavement 

thicknesses were constant and the temperature was almost constant on all stations. 

However, within reasonable variation, the thickness will also affect the deflection and the 

dissipation in the same direction. The temperature may contribute to curling, which also 

increases the input and output in the same fashion. 
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